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Chapitre 4 : Cisaillement simple
Définition et Notions générales

La section normale F d’'un solide est soumise au cisaillement simple quand le torseur
des efforts intérieurs se réduit a I effort tranchant T dans le plan de F

A l'exception de ces cas limites proches de la rupture, le cisaillement simple
n’apparait jamais isolément; il est toujours combiné a une autre sollicitation.

|’effort tranchant étant, dans les poutres droites, la dériveée du moment de flexion par
rapport a l'abscisse x, le cisaillement simple ne peut exister que dans certaines
sections particulieres pour lesquelles sont remplies simultanément les conditions

° Mf=0

de

+ —L=T#0 l%A A\A




Chapitre 4 : Cisaillement simple

Contrainte de cisaillement

L’évaluation des contraintes dans une section soumise au cisaillement simple est ba-
sée sur I'hypothese de Bernoulli et conduit a dire que : la section F’ apres
déformation se déduit de F par simple translation dans la direction de I'effort
tranchant T (section plane avant déformation reste plane apres déformation).

Avec cette hypothese, les axes principaux d’inertie de la section ne jouent aucun role
particulier. Il est donc possible, sans restreindre la portée des résultats, de choisir
'axe Gy dans la direction de I'effort tranchant T (T, = T, T, = 0)




Chapitre 4 : Cisaillement simple
Contrainte de cisaillement

Les équations d’équilibre sont des lors toutes nulles sauf la deuxieme :

@ N=[[, cdF=0 d M, =[f, 1,y—1,2dF =0
b) T, = [f, 7y dF €) Ms, = [[. 0zdF =0
(© T,= [ ,dF =0 N Mp=—Jf, oydF =0

L’hypothese admise (translation y de la section) entraine nécessairement o = 0 et
7. = 0 dans toute la section, de sorte que les équations (a), (c), (e) et (f) sont
verifiées.

De plus, cette hypothese ne peut étre remplie que si , est constante :

T
« T,= J[, vy dF =1, F > T=

« M= [, tyzdF =1, [, zdF =0

Vérifiée puisque le moment siafigue est nul pour tout axe passant par le centre de
gravite G




Chapitre 4 : Cisaillement simple

Déformation en cisaillement simple

Somme des forces et des moments autour de I'axe Gz

« 2T, =T dydz—1_y_, dydz =0 -

> Tyy = Toxoy az 7 n—

« XTy =71y_ydxdz—1_y, dxdz =0

dy
— e IR

© XM, =21,,dydz-dx/2+27_,,dxdz-dy/2 =0

F Tyy = —Toyy




Chapitre 4 : Cisaillement simple

Déformation en cisaillement simple

Considérons un élément de matiere de longueur dx compris entre deux sections F,
et F, infiniment proches, le moment de flexion 7 dx étant ainsi néegligeable en
comparaison de |'effort tranchant T.

Par rapport a la face F, supposeée fixe, la section F, est décalée d’'une distance dy
proportionnelle a dx et a la contrainte de cisaillement

1
. dy=5dx'T < ?de
Dans cette expression, le rapport dy/dx = y 1

Y =

est 'angle de glissement et le facteur de
proportionnalit¢ G est le moadule de

glissement, ces deux coefficients étant par - '
consequent liés par la relation 1

° ‘y:% \
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Chapitre 4 : Cisaillement simple

Analyse de I'état de contrainte

Soit un element cubique autour du point M,. Les contraintes normales sont nulles sur
toutes les faces (o, = g, = o, = 0) et la contrainte tangentielle est nulle sur les faces
perpendiculaires a M,z. On en deduit que M,z est un axe principal, et Myxy un plan
principal. L’'état de contrainte du cisaillement simple est par consequent
bidimensionnel, une des contraintes principales etant nulle.

Représentation
2d - 3d
(pas de 7 surle
plan Myxy)

La contrainte tangentielle est 7. = ¢ dans les faces perpendiculaires a Myx et vaut
donc 7, = -7 dans les faces perpendiculaires a M,y
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Chapitre 4 : Cisaillement simple

Analyse de I'état de contrainte

Considérons a nouveau une section oblique F,, perpendiculaire au plan principal
M xy et tournant autour de I'axe Mz, sa normale n formant un angle @ avec I'axe Myx

B v
A ﬁ/ .
%E iejf ﬂe—}grea—»
' traint

S ¢on

\\/

D i A4
Y

Les contraintes dans la section oblique £, en fonction des contraintes sur les axes
de référence. Apres projection sur la normale n et la direction orthogonale de la
section F, I'equilibre des forces conduit aux equations suivantes

© Fpop,—F tsing —F,tcosp =0

© Fptp—FEtcosp+FE,tsing =0
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Chapitre 4 : Cisaillement simple

Analyse de I'état de contrainte

Compte tenu des définitions F, = F,cos g et F, = F,sin ¢ et d'une simplification par
F, des expressions obtenues

» 0, =2Tsing cos@ =7 sin2¢ =1 cos 2(p — @)

© Ty = T(COSZ Q — sin? QD) = TCOS20= —71T Sin2(§0 - QDO)

ou le déphasage ¢, vaut z74. On trouve une fois de plus les équations parametriques

d'un cercle, correspondant au cercle de Mohrfondamental 7,
14



Chapitre 4 : Cisaillement simple

Analyse de I'état de contrainte
Les deux autres cercles sont symetriques par rapport a I'axe des .

Les cercles de Mohr permettent de trouver immédiatement les contraintes principales
et 'orientation des axes principaux correspondant.

° 01 =471
° O'2=0
° 03 =—-"T

L 'axe z est un axe principale pour lequel la contrainte normal o, est nulle (axe Y).

La contrainte principales o, correspond a un déphasage ¢, de #/4. On trouve ainsi
'orientation de 'axe principale X a 45° de I'axe x. Ainsi que I'axe principale Z a 45° de
I"axe y. 15



Chapitre 4 : Cisaillement simple

Variation relative de volume

Le volume élémentaire (dV = dx dy dz)
« dV' = dx(1+ &) dy(l + ey) dz(1+ &,)

=dxdy dz(l + &t &yt &t ExEy + 4, + EyE, + exeyez)

Si 'on néglige les puissances superieures a 1 des allongements relatifs

c dV' = dV(1+ g+ & + &)

La variation relative de volume s’exprime par

_(av'—av) _ _
c V= v = &t &t & =

T—T
E

O'1+ o3
E

(1-2u) =0

(1-2w=

Ce qui montre gu’en cisaillement simple, la variation relative de volume est nulle.
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Chapitre 4 : Cisaillement simple

Variation relative de volume

Le volume élémentaire (dV = dx dy dz)
« dV' = dx(1+ &) dy(l + ey) dz(1+ &,)

=dxdy dz(l + &t &yt &, tExEy + 4, + EyE, + exeyez)
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Chapitre 4 : Cisaillement simple

Energie de déformation

L’énergie de déformation en cisaillement simple equivaut au demi-produit de I'effort
tranchant 7' par le glissement dy de la section F

1 1 T2
° dU—ETdy—ETF)/dX— EdV

N

Tydl/ =

L.

14

N |-

Q| N

En divisant par I'élément de volume dV et en introduisant le module de glissement on
établit les trois expressions suivantes de la densité d’énergie en cisaillement simple

dy

y

A




Chapitre 4 : Cisaillement simple

Module de Young et module de glissement

Le module de glissement n’'est pas indépendant du moadule d’élasticité car les défor-
mations dans le sens des contraintes principales o, et o, doivent étre compatibles
géomeétriqguement avec les glissements dans le sens des .

Considérons la face ABCD d’un cube en supposant que le cote CD d’aréte dx reste
fixe

Apres déformation, le point 4 devient 4’ avec

- AA' = dxy=dx£

Soit A" la projection de 4 sur CA'. Les angles yet o
étant tres petits, I'allongement de la diagonale AC est
égalaA'A”

- AA"=ACe= dx\/i%(al — Uoz) = dx\/fé(l + u)

Lo o
dx\2 5 uE

19



Chapitre 4 : Cisaillement simple

Module de Young et module de glissement
Comme I'angle a est tres petit, les triangles 44'4" et ACD sont semblables

R AA,=\/7A’A”

T
AA —dxy—de

1 T
A'A" = AC £ = dx\/ff(al — Uo3) = dx\/EE(l + uw)

Cette condition entraine I'égalité suivante

. dx% = \/fdx\/fé(l + u)

Et, par consequent, le lien entre les modules
E et G a pour expression
. _ '8

C2(14p)
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Chapitre 4 : Cisaillement simple

Module de Young et module de glissement
Comme I'angle a est tres petit, les triangles 44'4" et ACD sont semblables

R AA,=\/7A’A”

« cos(45 — a) = cos(45) cos(a) + sin(45) sin(a)

2 2
~Y2_ 1 .
7 v2 45+ dx
1
= cos(45) = =
\/E A" <
AIAII
=22 _ v
Y =1, ou a= 2+y
* Vmax =2 et a=0.00142 ~ 1%o 45-a

A’
21



Annexe lll : Moment d'une aire plane

Moment du premier ordre

Les moments du premier ordre ou moments statiques d’'une aire plane F du plan Oxy
par rapport respectivement a I'origine O, a I'axe Ox et I'axe Oy se définissent de la
maniere suivante

+ S=[[, rdF YA
© Sy = ffp y dF Gee. )
7 o dF(x,y)
/
n Yy
0 & X >x

ou r est le vecteur-lieu de I'élément d'aire dF. Relevons que les moments §, et S,
sont simplement les composantes du moment S '




Annexe lll : Moment d'une aire plane
Moment du premier ordre

La connaissance des moments statiques permet de determiner la position s du cen-

tre d’inertie G de I'aire, ainsi que ses deux composantes et

S

/I dF

ngfF xdF=

fly aF

JIp dF

Les moments S, et S, sont nuls lorsque les axes passent par le centre d'inertie G (& =

. |

n=0)

_ /lz rdF _

= ffF y dF =

S

Sy

F

Sx

F

YA

X

—
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