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La section normale F d’un solide est soumise au cisaillement simple quand le torseur
des efforts intérieurs se réduit à l’effort tranchant T dans le plan de F

A l’exception de ces cas limites proches de la rupture, le cisaillement simple
n’apparaît jamais isolément; il est toujours combiné à une autre sollicitation.

L’effort tranchant étant, dans les poutres droites, la dérivée du moment de flexion par
rapport à l’abscisse x, le cisaillement simple ne peut exister que dans certaines
sections particulières pour lesquelles sont remplies simultanément les conditions

• 𝐌𝐌𝑓𝑓 = 𝟎𝟎

•
d𝐌𝐌𝑓𝑓

d𝑥𝑥
= 𝐓𝐓 ≠ 𝟎𝟎

Définition  et  Notions  générales
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L’évaluation des contraintes dans une section soumise au cisaillement simple est ba-
sée sur l’hypothèse de Bernoulli et conduit à dire que : la section F' après
déformation se déduit de F par simple translation dans la direction de l’effort
tranchant T (section plane avant déformation reste plane après déformation).

Avec cette hypothèse, les axes principaux d’inertie de la section ne jouent aucun rôle
particulier. Il est donc possible, sans restreindre la portée des résultats, de choisir
l’axe Gy dans la direction de l’effort tranchant T (Ty = T, Tz = 0)

Contrainte de cisaillement
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Les équations d’équilibre sont dès lors toutes nulles sauf la deuxième :

L’hypothèse admise (translation y de la section) entraîne nécessairement σ = 0 et
τz = 0 dans toute la section, de sorte que les équations (a), (c), (e) et (f) sont
vérifiées.

De plus, cette hypothèse ne peut être remplie que si τy est constante :

• 𝑇𝑇𝑦𝑦 = ∬𝐹𝐹 𝜏𝜏𝑦𝑦 d𝐹𝐹 = 𝜏𝜏𝑦𝑦 𝐹𝐹  𝜏𝜏 = 𝑇𝑇
𝐹𝐹

• 𝑀𝑀𝑡𝑡 = ∬𝐹𝐹 𝜏𝜏𝑦𝑦 𝑧𝑧 d𝐹𝐹 = 𝜏𝜏𝑦𝑦 ∬𝐹𝐹 𝑧𝑧 d𝐹𝐹 = 0

Vérifiée puisque le moment statique est nul pour tout axe passant par le centre de
gravité G

Contrainte de cisaillement

(a) 𝑁𝑁 = ∬𝐹𝐹 𝜎𝜎 d𝐹𝐹 = 0

(b) 𝑇𝑇𝑦𝑦 = ∬𝐹𝐹 𝜏𝜏𝑦𝑦 d𝐹𝐹

(c) 𝑇𝑇𝑧𝑧 = ∬𝐹𝐹 𝜏𝜏𝑧𝑧 d𝐹𝐹 = 0

(d) 𝑀𝑀𝑡𝑡 = ∬𝐹𝐹 𝜏𝜏𝑧𝑧 𝑦𝑦 − 𝜏𝜏𝑦𝑦 𝑧𝑧 d𝐹𝐹 = 0

(e) 𝑀𝑀𝑓𝑓𝑓𝑓 = ∬𝐹𝐹 𝜎𝜎 𝑧𝑧 d𝐹𝐹 = 0

(f) 𝑀𝑀𝑓𝑓𝑧𝑧 = −∬𝐹𝐹 𝜎𝜎 𝑦𝑦 d𝐹𝐹 = 0
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Somme des forces et des moments autour de l’axe Gz

• ∑𝑇𝑇𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜏𝜏−𝑥𝑥−𝑦𝑦 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0

 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜏𝜏−𝑥𝑥−𝑦𝑦

• ∑𝑇𝑇𝑥𝑥 = 𝜏𝜏𝑦𝑦−𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜏𝜏−𝑦𝑦𝑦𝑦 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0

 𝜏𝜏𝑦𝑦−𝑥𝑥 = 𝜏𝜏−𝑦𝑦𝑦𝑦

• ∑𝑀𝑀𝑧𝑧 = 2 𝜏𝜏𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 � 𝑑𝑑𝑑𝑑/2 + 2 𝜏𝜏−𝑦𝑦𝑦𝑦 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 � 𝑑𝑑𝑦𝑦/2 = 0

 𝜏𝜏𝑥𝑥𝑥𝑥 = −𝜏𝜏−𝑦𝑦𝑦𝑦

Déformation en cisaillement simple

x

y
z

τxyτ-x-y

τ-yx

Τy-x

dz

dy

dx
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Considérons un élément de matière de longueur dx compris entre deux sections F1
et F2 infiniment proches, le moment de flexion T dx étant ainsi négligeable en
comparaison de l’effort tranchant T.

Par rapport à la face F1 supposée fixe, la section F2 est décalée d’une distance dy
proportionnelle à dx et à la contrainte de cisaillement τ

• d𝑦𝑦 = 1
𝐺𝐺

d𝑥𝑥 � 𝜏𝜏

Déformation en cisaillement simple

Dans cette expression, le rapport dy/dx = γ
est l’angle de glissement et le facteur de
proportionnalité G est le module de
glissement, ces deux coefficients étant par
conséquent liés par la relation

• 𝛾𝛾 = 𝜏𝜏
𝐺𝐺
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Soit un élément cubique autour du point M0. Les contraintes normales sont nulles sur
toutes les faces (σx = σy = σz = 0) et la contrainte tangentielle est nulle sur les faces
perpendiculaires à M0z. On en déduit que M0z est un axe principal, et M0xy un plan
principal. L’état de contrainte du cisaillement simple est par conséquent
bidimensionnel, une des contraintes principales étant nulle.

La contrainte tangentielle est τx = τ dans les faces perpendiculaires à M0x et vaut
donc τy = -τ dans les faces perpendiculaires à M0y

Analyse de l’état de contrainte

Fϕ

Représentation 
2d – 3d

(pas de  τ  sur le 
plan M0xy)

ϕ
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Considérons à nouveau une section oblique Fϕ, perpendiculaire au plan principal
M0xy et tournant autour de l’axe M0z, sa normale n formant un angle ϕ avec l’axe M0x

Les contraintes dans la section oblique Fϕ en fonction des contraintes sur les axes
de référence. Après projection sur la normale n et la direction orthogonale de la
section Fϕ, l’équilibre des forces conduit aux équations suivantes

• 𝐹𝐹𝜑𝜑 𝜎𝜎𝜑𝜑− 𝐹𝐹𝑥𝑥 𝜏𝜏 sin𝜑𝜑 − 𝐹𝐹𝑦𝑦 𝜏𝜏 c𝑜𝑜𝑜𝑜 𝜑𝜑 = 0

• 𝐹𝐹𝜑𝜑 𝜏𝜏𝜑𝜑− 𝐹𝐹𝑥𝑥 𝜏𝜏 c𝑜𝑜𝑜𝑜 𝜑𝜑 + 𝐹𝐹𝑦𝑦 𝜏𝜏 sin𝜑𝜑 = 0

Analyse de l’état de contrainte

Equilibre de force 
pas des contraintes
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Compte tenu des définitions Fx = Fϕ cos ϕ et Fy = Fϕ sin ϕ et d’une simplification par
Fϕ des expressions obtenues

• 𝜎𝜎𝜑𝜑 = 2𝜏𝜏 sin𝜑𝜑 cos𝜑𝜑 = 𝜏𝜏 sin 2𝜑𝜑 = 𝜏𝜏 cos 2 𝜑𝜑 − 𝜑𝜑0

• 𝜏𝜏𝜑𝜑 = τ cos2 𝜑𝜑 − sin2 𝜑𝜑 = 𝜏𝜏 cos 2𝜑𝜑 = − 𝜏𝜏 sin 2 𝜑𝜑 − 𝜑𝜑0

où le déphasage ϕ0 vaut π/4. On trouve une fois de plus les équations paramétriques
d’un cercle, correspondant au cercle de Mohr fondamental Γxy

Analyse de l’état de contrainte
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Les deux autres cercles sont symétriques par rapport à l’axe des τ.

Les cercles de Mohr permettent de trouver immédiatement les contraintes principales
et l’orientation des axes principaux correspondant.

• 𝜎𝜎1 = +𝜏𝜏

• 𝜎𝜎2 = 0

• 𝜎𝜎3 = −𝜏𝜏

L’axe z est un axe principale pour lequel la contrainte normal σ2 est nulle (axe Y).

La contrainte principales σ1 correspond à un déphasage ϕ0 de π/4. On trouve ainsi
l’orientation de l’axe principale X à 45° de l’axe x. Ainsi que l’axe principale Z à 45° de
l’axe y.

Analyse de l’état de contrainte

σϕ

τϕ
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Le volume élémentaire (dV = dx dy dz)

• 𝑑𝑑𝑉𝑉′ = 𝑑𝑑𝑥𝑥 1 + 𝜀𝜀𝑥𝑥 𝑑𝑑𝑦𝑦 1 + 𝜀𝜀𝑦𝑦 𝑑𝑑𝑧𝑧 1 + 𝜀𝜀𝑧𝑧

= 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 1 + 𝜀𝜀𝑥𝑥 + 𝜀𝜀𝑦𝑦 + 𝜀𝜀𝑧𝑧 + 𝜀𝜀𝑥𝑥𝜀𝜀𝑦𝑦 + 𝜀𝜀𝑥𝑥𝜀𝜀𝑧𝑧 + 𝜀𝜀𝑦𝑦𝜀𝜀𝑧𝑧 + 𝜀𝜀𝑥𝑥𝜀𝜀𝑦𝑦𝜀𝜀𝑧𝑧

Si l’on néglige les puissances supérieures à 1 des allongements relatifs

• 𝑑𝑑𝑉𝑉′ ≅ 𝑑𝑑𝑉𝑉 1 + 𝜀𝜀𝑥𝑥 + 𝜀𝜀𝑦𝑦 + 𝜀𝜀𝑧𝑧

La variation relative de volume s’exprime par

• 𝑣𝑣 = 𝑑𝑑𝑉𝑉′ −𝑑𝑑𝑉𝑉
𝑑𝑑𝑉𝑉

= 𝜀𝜀𝑥𝑥 + 𝜀𝜀𝑦𝑦 + 𝜀𝜀𝑧𝑧 = 𝜎𝜎1+ 𝜎𝜎3
𝐸𝐸

1 − 2𝜇𝜇 = 𝜏𝜏 − 𝜏𝜏
𝐸𝐸

1 − 2𝜇𝜇 = 0

Ce qui montre qu’en cisaillement simple, la variation relative de volume est nulle.

Variation relative de volume
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Le volume élémentaire (dV = dx dy dz)

• 𝑑𝑑𝑉𝑉′ = 𝑑𝑑𝑥𝑥 1 + 𝜀𝜀𝑥𝑥 𝑑𝑑𝑦𝑦 1 + 𝜀𝜀𝑦𝑦 𝑑𝑑𝑧𝑧 1 + 𝜀𝜀𝑧𝑧

= 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 1 + 𝜀𝜀𝑥𝑥 + 𝜀𝜀𝑦𝑦 + 𝜀𝜀𝑧𝑧 + 𝜀𝜀𝑥𝑥𝜀𝜀𝑦𝑦 + 𝜀𝜀𝑥𝑥𝜀𝜀𝑧𝑧 + 𝜀𝜀𝑦𝑦𝜀𝜀𝑧𝑧 + 𝜀𝜀𝑥𝑥𝜀𝜀𝑦𝑦𝜀𝜀𝑧𝑧

Variation relative de volume

x
y

z
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Énergie de déformation

L’énergie de déformation en cisaillement simple équivaut au demi-produit de l’effort
tranchant T par le glissement dy de la section F

• d𝑈𝑈 = 1
2
𝑇𝑇 d𝑦𝑦 = 1

2
𝜏𝜏 𝐹𝐹 � 𝛾𝛾d𝑥𝑥 = 1

2
𝜏𝜏 𝛾𝛾 d𝑉𝑉 = 1

2
𝜏𝜏2

𝐺𝐺
d𝑉𝑉

En divisant par l’élément de volume dV et en introduisant le module de glissement on
établit les trois expressions suivantes de la densité d’énergie en cisaillement simple

• 𝑢𝑢 = 𝜏𝜏2

2𝐺𝐺
= 𝐺𝐺 𝛾𝛾2

2
= 𝜏𝜏 𝛾𝛾

2

𝛾𝛾 =
𝜏𝜏
𝐺𝐺

dy

T

(    )
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Module de Young et module de glissement

Le module de glissement n’est pas indépendant du module d’élasticité car les défor-
mations dans le sens des contraintes principales σ1 et σ3 doivent être compatibles
géométriquement avec les glissements dans le sens des τ.

Considérons la face ABCD d’un cube en supposant que le côté CD d’arête dx reste
fixe

Après déformation, le point A devient A' avec

• 𝐴𝐴𝐴𝐴′ = 𝑑𝑑𝑑𝑑 𝛾𝛾 = 𝑑𝑑𝑑𝑑 𝜏𝜏
𝐺𝐺

Soit A" la projection de A sur CA'. Les angles γ et α
étant très petits, l’allongement de la diagonale AC est 
égal à A'A" 

• 𝐴𝐴′𝐴𝐴′′ = 𝐴𝐴𝐴𝐴 𝜀𝜀 = 𝑑𝑑𝑑𝑑 2 1
𝐸𝐸
𝜎𝜎1 − 𝜇𝜇𝜎𝜎3 = 𝑑𝑑𝑑𝑑 2 𝜏𝜏

𝐸𝐸
1 + 𝜇𝜇

𝑑𝑑𝑑𝑑 2
𝜎𝜎1
𝐸𝐸
− 𝜇𝜇

𝜎𝜎3
𝐸𝐸
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Module de Young et module de glissement

Comme l’angle α est très petit, les triangles AA'A" et ACD sont semblables

• 𝐴𝐴𝐴𝐴′ = 2 𝐴𝐴′𝐴𝐴′′

Cette condition entraîne l’égalité suivante

• 𝑑𝑑𝑑𝑑 𝜏𝜏
𝐺𝐺

= 2𝑑𝑑𝑑𝑑 2 𝜏𝜏
𝐸𝐸

1 + 𝜇𝜇

Et, par conséquent, le lien entre les modules 
E et G a pour expression

• 𝐺𝐺 = 𝐸𝐸
2 1+𝜇𝜇

𝐴𝐴𝐴𝐴′ = 𝑑𝑑𝑑𝑑 𝛾𝛾 = 𝑑𝑑𝑑𝑑
𝜏𝜏
𝐺𝐺

𝐴𝐴′𝐴𝐴′′ = 𝐴𝐴𝐴𝐴 𝜀𝜀 = 𝑑𝑑𝑑𝑑 2
1
𝐸𝐸

𝜎𝜎1 − 𝜇𝜇𝜎𝜎3 = 𝑑𝑑𝑑𝑑 2
𝜏𝜏
𝐸𝐸

1 + 𝜇𝜇
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Module de Young et module de glissement

Comme l’angle α est très petit, les triangles AA'A" et ACD sont semblables

• 𝐴𝐴𝐴𝐴′ = 2 𝐴𝐴′𝐴𝐴′′

• cos 45 − 𝛼𝛼 = cos 45 cos 𝛼𝛼 + sin 45 sin 𝛼𝛼

= 2
2

1 + 2
2
𝛼𝛼

≅ 2
2

= 1
2

= cos 45 = 1
2

• cos 45 − 𝛼𝛼 = 𝐴𝐴′𝐴𝐴′′

𝐴𝐴𝐴𝐴′

• 𝛾𝛾 = 2𝛼𝛼
1−𝛼𝛼

ou 𝛼𝛼 = 𝛾𝛾
2+𝛾𝛾

• 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜎𝜎𝑒𝑒
𝐺𝐺

et 𝛼𝛼 = 0.00142 ≈ 1‰ 45 – α

45 + α

A"

A'

A



Les moments du premier ordre ou moments statiques d’une aire plane F du plan Oxy
par rapport respectivement à l’origine O, à l’axe Ox et l’axe Oy se définissent de la
manière suivante

• 𝐒𝐒 = ∬𝐹𝐹 𝐫𝐫 𝑑𝑑𝑑𝑑

• 𝑆𝑆𝑥𝑥 = ∬𝐹𝐹 𝑦𝑦 𝑑𝑑𝑑𝑑

• 𝑆𝑆𝑦𝑦 = ∬𝐹𝐹 𝑥𝑥 𝑑𝑑𝑑𝑑

où r est le vecteur-lieu de l’élément d’aire dF. Relevons que les moments Sx et Sy
sont simplement les composantes du moment S

Annexe III : Moment d’une aire plane
Moment du premier ordre



La connaissance des moments statiques permet de déterminer la position s du cen-
tre d’inertie G de l’aire, ainsi que ses deux composantes ξ et η

• 𝐬𝐬 = ∬𝐹𝐹 𝐫𝐫 𝑑𝑑𝑑𝑑

∬𝐹𝐹 𝑑𝑑𝑑𝑑
= 𝐒𝐒

𝐹𝐹

• 𝜉𝜉 = ∬𝐹𝐹 𝑥𝑥 𝑑𝑑𝑑𝑑

∬𝐹𝐹 𝑑𝑑𝑑𝑑
= 𝑆𝑆𝑦𝑦

𝐹𝐹

• 𝜂𝜂 = ∬𝐹𝐹 𝑦𝑦 𝑑𝑑𝑑𝑑

∬𝐹𝐹 𝑑𝑑𝑑𝑑
= 𝑆𝑆𝑥𝑥

𝐹𝐹

Les moments Sx et Sy sont nuls lorsque les axes passent par le centre d’inertie G (ξ =
η = 0)

Annexe III : Moment d’une aire plane
Moment du premier ordre


	Mécanique des structures������Chapitre 4 : Cisaillement simple
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Mécanique des structures������Chapitre 4 : Cisaillement simple
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Annexe III : Moment d’une aire plane
	Annexe III : Moment d’une aire plane



